
Math 8610 (Spring 2019) Homework 2 Trevor Squires

1. (a) Determine the eigenvalues, determinant, and singular values of a Householder reflec-

tor H = I − 2vvT

vT v
. For the eigenvalues, give a geometric argument as well as an

algebraic proof.

Solution. Let us begin with a geometric interpretation of the Householder trans-
formation. We would like to find a transformation that maps x to ‖x1‖e1. Consider
the vector v = ‖x1‖e1 − x. The projection of x onto the hyperplane orthogonal to

the vector v is proj(x) = x − v
(
vT x
vT v

)
. However, if we are to project to ‖x1‖e1,

we need to go twice this distance. Thus, our Householder reflection is characterized

by x − 2v
(
vT x
vT v

)
and we say that our Householder reflect H = (I − vvT

vT v
). This

geometric interpretation immediately motivates many properties such as symmetry
and orthogonality. One can also see eigenvalues from this interpretation. Since our
projection is a reflection across a hyperplane (of dimension m−1), all but 1 direction
is fixed. That is, λi = 1 for λ = 1, . . . ,m− 1 and λm = −1.

For the algebraic solutions, note that if y ⊥ v. Then Hy = y − 2vT y
vT v

= y − 2 · 0 = y.

Since dim span(y) = 1, dim span(y)⊥ = m − 1. Thus, λ = 1 is an eigenvalue with
multiplicity m − 1. Noting that Hv = −v shows that the remaining eigenvalue
is −1. The determinant is simply the product of all of these eigenvalues. Thus,
detH = 1m−1 · −1 = −1. Since H is symmetric (because vvT is symmetric), we
know that the singular values are the absolute value of the eigenvalues. That is,
σi = 1 for all i = 1, . . . ,m.

(b) Consider the Givens rotation G =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. Given a geometric interpre-

tation of the action of G on a vector in R2. Do the same analysis as part (a) for G,
but no geometric interpretation is needed for eigenvalues.

Solution. Recall that the matrix R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
rotates a vector in R2

counterclockwise by an angle of θ. Substituting θ = −θ, then we get the Givens

matrix G =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. If θ is the angle between a point x and the x-axis,

then Gx rotates x to the x-axis. We accomplish this by setting θ to be the angle
such that cos(θ) = x1√

x2
1+x2

2

and sin(θ) = x2√
x2
1+x2

2

Algebraically, we can compute the eigenvalues as the roots of the equation

cos2(θ) + λ2 − 2λ cos(θ) + sin2(θ) = 0

Letting x = (a, b)T , this becomes

1 + λ− 2λa√
a2 + b2

= 0

after substituting θ. By the quadratic formula, we obtain

λ1,2 =

2a√
a2+b2

±
√

2a√
a2+b2

− 4

2
=

2a√
a2 + b2

± 2b√
a2 + b2

i = cos(θ)± i sin(θ)

1



Math 8610 (Spring 2019) Homework 2 Trevor Squires

as our eigenvalues. The singular values can be found through construction of a singu-
lar value decomposition. First note that for any α, β, the vectors u = (−α, β)T , v =
(β, α)T are orthogonal since

[
−α β

] [β
α

]
= −αβ + βα = 0

Thus, [
− cos(θ) sin(θ)
sin(θ) cos(θ)

] [
−1 0
0 1

]
I2 =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
= G

is a valid SVD for G. From this decomposition, we immediately read off σ1,2 = ±1.

2. Implement QR factorization in MATLAB based on

• classical Gram-Schmidt (CGS)

• modified Gram-Schmidt (MGS)

• MGS with double orthogonalization

• Householder reflectors

Then we construct three matrix as follows.

A1 = randn(2^n20,15);

u = (-1:2/40:1)’;

A2 = u.^(0:23);

A3 = u.^(0:40);

For each matrix, run the algorithms, then compute ‖A−QR‖F
‖A‖F and ‖QTQ − In‖. Draw

conclusions about the backward stability of these algorithms, and the orthogonality of
the computed Q factors, probably related to the condition numbers of the matrices.

Solution. Figure 1 shows the errors ‖QTQ−In‖2 for each different algorithm as a function
of the condition number of matrix A. I modified the code to produce 10 different matrices
of increasing condition numbers. The condition numbers of these matrices are1

6.805817606385450e+00

5.137698938981403e+02

1.667468568998088e+04

6.117931220627653e+05

2.622543104797633e+07

1.387410733558138e+09

9.876123847277121e+10

1.097758126019078e+13

2.596372220698814e+15

3.498715070665783e+17

2



Math 8610 (Spring 2019) Homework 2 Trevor Squires

Algorithm Forward Error of A with large condition number

CGS 3.76e− 16
MGS 6.36e− 16
MGS2 3.49e− 17
Householder −1.72e− 16

Table 1: Forward Errors of QR Factorization

respectively. One can see from Figure 1 that MGS2 and Householder factorizations reli-
ably produce orthogonal Q factors, even for matrices of incredibly large condition num-
bers. On the other hand, CGS and MGS fail to do. CGS shows its numerical instability
by how much more quickly it produces completely unusable Q factors. However as shown
in Table 1, all the algorithms produce respectable forward errors.

Figure 1: Factorization Errors

3. Evaluate the arithmetic work needed to retrieve the reduced factor QL from Householder
and Givens reduction of A to R, respectively. Compare that with the cost for the first
phase.

1Got lazy and just verbatim’d them

3



Math 8610 (Spring 2019) Homework 2 Trevor Squires

Solution. Recall that the full QR factorization in the first phase produces an R factor
used in the QR factorization. However, for a reduced QR factorization, note that

A = Q

[
R
0

]
= [QL, QR]

[
R
0

]
= QLR

Thus, it suffices to compute onlyQL. We can do this by applyingQn, . . . Q1 (orQT
n , . . . , Q

T
1

in the case of Givens) to the left of In. However, this almost the exact same cost as the
phase 1 calculations. The only difference is that in phase 1, we applied the transforma-
tions to A instead of In. Thus, the cost of retrieving our QL is roughly the same, most
definitely in the asymptotic sense, as phase 1. That is, explicitly computing QL is some-
thing that we do not want to do when we can avoid it as it doubles the computational
cost.

4. Implement the algorithm for solving linear system Ax = b or linear least squares problem
min‖b − Ax‖2 based on Householder QR. Make sure that the reduced Q factor is not
formed explicitly to save the cost of the second phase. Then, solve the linear least squares
problem min‖b − Ax‖2 where A = A2 and the linear system Ax = b, where A = A3

in [Q2], and b = [1,−1, 1,−1, . . . , ]T . Report ‖b−Ax̂‖2
‖A‖2‖x̂‖2 for both solves, and compare this

quantity associated with the solutions obtained by MATLAB’s backslash.

Solution. Rather than just run the experiments on two matrices, I solved linear least
squares on A = u.∧(0 : 4i) where i ranged from 1 to 10. Figure 2 shows the differences
in backward errors for both my solutions and MATLAB’s backslash. I show this as a
scatter plot because it appears as if my algorithm outperforms MATLAB’s in almost
every case2. However, after looking at the scaling, this is in fact a semilog plot, one
with a very small scale. That is, the differences between the two backward errors are
around machine precision. Furthermore, Figure 3 shows us that despite performing on
par with MATLAB’s backslash, my code has a long way to go before it is comparable in
speed. Nonetheless, both exhibit backward errors on the magnitude of machine precision
for solving linear least square problems.

5. Suppose the m× n matrix A has the form

A =

[
A1

A2

]
where A1 is nonsingular matrix of dimension n × n and A2 is an arbitrary matrix of
appropriate dimension. Prove that ‖A+‖2 ≤ ‖A−11 ‖2.

Proof. Let A = QR be a reduced QR factorization of A. Note that

‖A†‖ = ‖(ATA)−1AT ‖ = ‖(RTR)−1RTQT ‖
= ‖R−1QT ‖

2This isn’t entirely true. I can generate plots in MATLAB, but it is much harder to generate tables. This is
also the faster option to display data

4



Math 8610 (Spring 2019) Homework 2 Trevor Squires

Figure 2: Backward Errors

Figure 3: Execution Time

Now decompose Q into Q1, Q2 of the same size as the decomposition of A. That is,[
A1

A2

]
=

[
Q1

Q2

]
R

From the above, we conclude that Q1R = A1 or equivalently, R−1 = A−11 Q1. Substituting
this into our previous equation,

‖A†‖ = ‖A−11 Q1Q
T ‖ ≤ ‖A−11 ‖‖Q1‖‖QT ‖

We know that Q is orthogonal, so it only suffices to show that ‖Q1‖ ≤ 1. Let x ∈ Rn and

5



Math 8610 (Spring 2019) Homework 2 Trevor Squires

suppose that Q1x = z. Then

Qx =

[
z
a

]
for some a ∈ R. Thus, ‖Q1x‖ ≤ ‖Qx‖ ≤ ‖x‖3 and the inequality follows.

6. Take m = 50, n = 12. Using MATLAB’s linspace, define t to be the m vector correspond-
ing to linearly spaced grid points from 0 to 1. Using MATLAB’s vander and fliplr, define
A to be the m×n polynomial of degree n−1. Take b to be the function cos(4t) evaluated
on the grid. Now calculate and print the least squares coefficient vector x by six methods.

(a) Normal equations (using MATLAB’s \)
(b) QR factorization by MGS

(c) QR factorization by Householder transformations

(d) QR factorization computed by MATLAB’s qr

(e) x = A\b in MATLAB

(f) SVD, using MATLABs svd

The results are summarized in Table 2. To generate the table, I assumed that the solution
x = A\b computed using MATLAB’s backslash operator was the true solution. Each
vector of coefficients were then compared to the solution generated with the backslash,
and then normed. The results are a bit unsurprising. The normal equations and MGS look
to be numerically unstable while Householder, MATLAB QR factorization, and MATLAB
SVD all seem to be relatively close to the true solution. I am unsure as to how we only
managed to get the square root of machine precision, but it is likely due to the fact that
x = A\b is, in fact, not the true solution.

Algorithm Norm of Errors

Normal Eq 1.06e− 1
MGS 1.526e− 1
Householder 2.85e− 8
MATLAB QR 3.31e− 8
MATLAB SVD 3.20e− 8

Table 2: Norm of Coefficient Errors

3Note that these norms are not the same dimension wise

6



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1 Appendix

1.1 Script files

1.1.1 Question 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spring 2018 Math 8610 w/ Xue

% Homework 2

%

% Problem

% 2

%

% Function Dependencies

% qrcgs.m

% qrmgs.m

% qrmgs2.m

% house.m

% formQ.m

% houseEval.m

%

% Notes

% None

%

% Author

% Trevor Squires

%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

clc

close all;

n = [15 9:4:41];

matrixCount = 10;

A = cell(matrixCount,1);

A{1} = rand(2^20,n(1));

u = (-1:2/40:1)’;

condition= zeros(matrixCount,1);

condition(1:2) = [cond(A{1}) cond(A{2})];

for i = 2:matrixCount

A{i} = u.^(0:4*i);

condition(i) = cond(A{i});

end

7



Math 8610 (Spring 2019) Homework 2 Trevor Squires

cgs.forErr = zeros(matrixCount,1);

cgs.ortho = zeros(matrixCount,1);

mgs.forErr = zeros(matrixCount,1);

mgs.ortho = zeros(matrixCount,1);

mgs2.forErr = zeros(matrixCount,1);

mgs2.ortho = zeros(matrixCount,1);

hHolder.forErr = zeros(matrixCount,1);

hHolder.ortho = zeros(matrixCount,1);

%% Classical GS

for i = 1:matrixCount

[Q,R] = qrcgs(A{i});

cgs.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i},’fro’);

cgs.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Modified GS

for i = 1:matrixCount

[Q,R] = qrmgs(A{i});

mgs.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i},’fro’);

mgs.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Double Modified GS

for i = 1:matrixCount

[Q,R] = qrmgs2(A{i});

mgs2.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i},’fro’);

mgs2.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Householder Transformation

for i = 1:matrixCount

[v,R] = house(A{i});

Q = formQ(v);

hHolder.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i},’fro’);

hHolder.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

save(’HW2Q2’,’cgs’,’mgs’,’mgs2’,’hHolder’,’condition’)

%% Analysis

load HW2Q2

loglog(condition,cgs.ortho,’:’)

hold on

8



Math 8610 (Spring 2019) Homework 2 Trevor Squires

loglog(condition,mgs.ortho,’--’)

hold on

loglog(condition,mgs2.ortho,’-’)

hold on

loglog(condition,hHolder.ortho,’-.’)

title(’Loglog plot of orthogonal errors’)

legend(’CGS’,’MGS’,’MGS2’,’HouseHolder’,’location’,’best’)

9



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.1.2 Question 4

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spring 2018 Math 8610 w/ Xue

% Homework 2

%

% Problem

% 4

%

% Function Dependencies

% house.m

% formQ.m

% houseEval.m

%

% Notes

% None

%

% Author

% Trevor Squires

%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

clc

close all;

m = 41;

n = 5:4:m;

matrixCount = 10;

A = cell(matrixCount,1);

u = (-1:2/40:1)’;

condition= zeros(matrixCount,1);

for i = 1:matrixCount

A{i} = u.^(0:4*i);

condition(i) = cond(A{i});

end

myBackErr = zeros(1,matrixCount);

matBackErr = zeros(1,matrixCount);

%% Evaluation

for i = 1:matrixCount

powers = (2:n(i)+1)’;

solu = (-1*ones(n(i),1)).^powers;

10



Math 8610 (Spring 2019) Homework 2 Trevor Squires

b = A{i}*solu;

[v,R] = house(A{i});

y = houseEval(v,b,1);

mySolu = [R;zeros(m-n(i),n(i))]\y;

matSolu = mldivide(A{i},b);

myBackErr(i) = norm(b-A{i}*mySolu,2)/norm(A{i},2)/norm(mySolu,2);

matBackErr(i) = norm(b-A{i}*matSolu,2)/norm(A{i},2)/norm(matSolu,2);

end

figure();

semilogx(n,myBackErr,’bo’,n,matBackErr,’r*’)

xlabel(’Size of matrix’)

ylabel(’Backward Error’)

title(’Errors on Solving Linear Least Squares’)

legend(’My Errors’,’MATLAB Errors’)

11



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.1.3 Question 6

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spring 2018 Math 8610 w/ Xue

% Homework 2

%

% Problem

% 6 - Trefethen 11.3

%

% Function Dependencies

% house.m

% formQ.m

% houseEval.m

%

% Notes

% None

%

% Author

% Trevor Squires

%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

clc

close all;

m = 50;

n = 12;

t = linspace(0,1,m);

A = fliplr(vander(t));

A = A(:,1:12);

b = cos(4*t)’;

problem = cond(A);

error = zeros(1,5);

%% Matlab Backslash (solution)

solu = A\b;

%% Normal Equations

R = cholDecomp(A’*A);

normalCoeff = backSub(R’,forwardSub(R,A’*b));

error(1) = norm(solu-normalCoeff);

%% MGS

12



Math 8610 (Spring 2019) Homework 2 Trevor Squires

[Q,R] = qrmgs(A);

mgsCoeff = backSub(R,Q’*b);

error(2) = norm(solu-mgsCoeff);

%% Householder

[v,R] = house(A);

y = houseEval(v,b,1);

houseCoeff = [R; zeros(m-n,n)]\y;

error(3) = norm(solu-houseCoeff);

%% Matlab QR

[Q,R] = qr(A);

matqrCoeff = R\Q’*b;

error(4) = norm(solu-matqrCoeff);

%% Matlab SVD

[U,Sigma,V] = svd(A);

matsvdCoeff = V*(Sigma\(U’*b));

error(5) = norm(solu-matsvdCoeff);

13



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2 Accompanying Functions

1.2.1 Classical GS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% QRCGS.m

%

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square

% upper triangular matrix R

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% A - m x n matrix

%

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix

%

% NOTES

% Issues a warning if matrix is rank deficient

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Q,R] = qrcgs(A)

[m,n] = size(A);

Q = zeros(m,n);

R = zeros(n);

for k = 1:n

for i = 1:k-1

R(i,k) = Q(:,i)’*A(:,k);

end

tmpAk = A(:,k);

for i = 1:k-1

tmpAk = tmpAk - Q(:,i)*R(i,k);

end

R(k,k) = norm(tmpAk,2);

Q(:,k) = tmpAk/R(k,k);

end

14



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.2 Modified GS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% qrmgs.m

%

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square

% upper triangular matrix R using modified gram schmidt

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% A - m x n matrix

%

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix

%

% NOTES

% Issues a warning if matrix is rank deficient

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Q,R] = qrmgs(A)

[~,n] = size(A);

Q = A;

R = zeros(n);

for k = 1:n

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

for j = k+1:n

R(k,j) = Q(:,k)’*Q(:,j);

Q(:,j) = Q(:,j)-R(k,j)*Q(:,k);

end

end

15



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.3 Double Modified GS

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% qrmgs2.m

%

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square

% upper triangular matrix R using modified gram schmidt

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% A - m x n matrix

%

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix

%

% NOTES

% Issues a warning if matrix is rank deficient

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Q,R] = qrmgs2(A)

[Q1,R1] = qrmgs(A);

[Q,R2] = qrmgs(Q1);

R = R2*R1;

end

16



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.4 HouseHolder Factorization

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HOUSE.m

%

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square

% upper triangular matrix R householder transformations

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% A - m x n matrix

%

% OUTPUT

% v - matrix of vectors corresponding to Householder transformations

% R - n x n upper triangular matrix

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [v,R] = house(A)

[m,n] = size(A);

v = zeros(m,n);

for k = 1:n

x = A(k:m,k);

v(k:m,k) = sign(x(1))*norm(x,2)*eye(m-k+1,1) + x;

v(k:m,k) = v(k:m,k)/norm(v(k:m,k),2);

A(k:m,k:n) = A(k:m,k:n) - 2*v(k:m,k)*(v(k:m,k)’*A(k:m,k:n));

end

R = A(1:n,:);

end

17



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.5 Evaluate Householder

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HOUSEEVAL.m

%

% DESCRIPTION

% Given a matrix of v factors of house.m and a vector b, computes Q’b or

% Qb

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% v - matrix of factors from house.m

% b - vector in Qb or Q’b

% transpose - boolean variable that determines which calculation to

% perform

%

% OUTPUT

% b - either Q’b or Qb

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [b] = houseEval(v,b,transpose)

[m,n] = size(v);

if transpose

for k = 1:n

b(k:m) = b(k:m) - 2*v(k:m,k)*(v(k:m,k)’*b(k:m));

end

else

for k = n:-1:1

b(k:m) = b(k:m) - 2*v(k:m,k)*(v(k:m,k)’*b(k:m));

end

end

18



Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.6 Form Q Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FORMQ.m

%

% DESCRIPTION

% Given an output v from house.m, formQ(v) produces the orthogonal Q

% matrix in the reduced QR factorization such that A = QR

%

% AUTHOR

% Trevor Squires

%

% ARGUMENTS

% v - vector of Householder vectors computed in house.m

%

% OUTPUT

% Q - m x n orthogonal matrix

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Q] = formQ(v)

[m,n] = size(v);

Q = zeros(m,n);

for i = 1:n

x = zeros(m,1);

x(i) = 1;

Q(:,i) = houseEval(v,x,0);

end

19


	Appendix
	Script files
	Question 2
	Question 4
	Question 6

	Accompanying Functions
	Classical GS
	Modified GS
	Double Modified GS
	HouseHolder Factorization
	Evaluate Householder
	Form Q Function



