Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.

(a)

Determine the eigenvalues, determinant, and singular values of a Householder reflec-

tor H = 1 — 2%. For the eigenvalues, give a geometric argument as well as an
algebraic proof.

Solution. Let us begin with a geometric interpretation of the Householder trans-
formation. We would like to find a transformation that maps z to ||z1|le;. Consider
the vector v = ||z1]le; — . The projection of x onto the hyperplane orthogonal to
the vector v is proj(z) = =z — v (g%) However, if we are to project to [|z1|le1,
we need to go twice this distance. Thus, our Householder reflection is characterized
by © — 2v (Z;ﬁ) and we say that our Householder reflect H = (I — %) This

geometric interpretation immediately motivates many properties such as symmetry
and orthogonality. One can also see eigenvalues from this interpretation. Since our
projection is a reflection across a hyperplane (of dimension m —1), all but 1 direction
is fixed. That is, \; =1 for A\=1,...,m —1and \,, = —1.

For the algebraic solutions, note that if y 1 v. Then Hy =y — 2% =y—2-0=uy.

Since dimspan(y) = 1, dimspan(y)* = m — 1. Thus, A = 1 is an eigenvalue with
multiplicity m — 1. Noting that Hv = —v shows that the remaining eigenvalue
is —1. The determinant is simply the product of all of these eigenvalues. Thus,
det H = 1m"1. -1 = —1. Since H is symmetric (because vv! is symmetric), we

know that the singular values are the absolute value of the eigenvalues. That is,
o;=1foralli=1,...,m.

cos(f) sin(6)
—sin(f) cos(0)
tation of the action of G on a vector in R%. Do the same analysis as part (a) for G,
but no geometric interpretation is needed for eigenvalues.

cos(f) —sin(6)
sin(d) cos(6)

counterclockwise by an angle of 6. Substituting § = —6, then we get the Givens
cos() sin(6)
—sin(f) cos(0)
then Gz rotates x to the x-axis. We accomplish this by setting 6 to be the angle
such that cos(f) = ——L—= and sin(f) = —=2

2 2

[2. 2
Ti+Ts T1+T5

Algebraically, we can compute the eigenvalues as the roots of the equation

Consider the Givens rotation G = [] Given a geometric interpre-

Solution. Recall that the matrix R = [} rotates a vector in R2

matrix G = [} . If 6 is the angle between a point x and the x-axis,

cos?(0) + X2 — 2\ cos(#) + sin?(0) = 0
Letting 2 = (a,b)”, this becomes

2)\a _0
va? + b?

after substituting 6. By the quadratic formula, we obtain

1+A—

2 2
\/(12a+b2 + \/aQib2 —4 2a 2b
A2 =

= +
7 2 Va2 +b2 Va2 + b2

i = cos(f) £ isin(0)

1

Math 8610 (Spring 2019) Homework 2 Trevor Squires

as our eigenvalues. The singular values can be found through construction of a singu-
lar value decomposition. First note that for any a, 3, the vectors u = (—a, 8)T,v =
(B,a)T are orthogonal since

[—a f] [6]:—aﬁ+ﬂa20

(%

Thus,

oy ml [0 e nl 20] -

is a valid SVD for G. From this decomposition, we immediately read off o1 9 = £1.

2. Implement QR factorization in MATLAB based on

e classical Gram-Schmidt (CGS)
e modified Gram-Schmidt (MGS)
e MGS with double orthogonalization

e Householder reflectors

Then we construct three matrix as follows.

Al = randn(2°n20,15);
u= (-1:2/40:1)7;

A2 = u."(0:23);

A3 = u."(0:40);

For each matrix, run the algorithms, then compute % and ||QTQ — I,||. Draw
conclusions about the backward stability of these algorithms, and the orthogonality of
the computed Q factors, probably related to the condition numbers of the matrices.

Solution. Figure 1 shows the errors ||Q7 Q—1I,,||2 for each different algorithm as a function
of the condition number of matrix A. I modified the code to produce 10 different matrices
of increasing condition numbers. The condition numbers of these matrices are!

.805817606385450e+00
.137698938981403e+02
.667468568998088e+04
.117931220627653e+05
.622543104797633e+07
.387410733558138e+09
.876123847277121e+10
.097758126019078e+13
.596372220698814e+15
.498715070665783e+17

W NN, O, NOOF OO

Math 8610 (Spring 2019) Homework 2 Trevor Squires

Algorithm Forward Error of A with large condition number
CGS 3.76e — 16

MGS 6.36e — 16

MGS2 3.49e — 17

Householder —1.72e — 16

Table 1: Forward Errors of QR Factorization

respectively. One can see from Figure 1 that MGS2 and Householder factorizations reli-
ably produce orthogonal Q factors, even for matrices of incredibly large condition num-
bers. On the other hand, CGS and MGS fail to do. CGS shows its numerical instability
by how much more quickly it produces completely unusable Q factors. However as shown
in Table 1, all the algorithms produce respectable forward errors.

Loglog plot of orthogonal errors

10°
102 F . |
.
: k2
1073} 5% 1
" L cGs
2 — — —MGS
3 MGS2
; % e HouseHolder
1070 g]
=
1'}-15 "—':":’ '''''' LE S X _EE—FE BV FE B T TR A Al =]
10° 10° 1010 1013 1020

Figure 1: Factorization Errors

3. Evaluate the arithmetic work needed to retrieve the reduced factor Q)1 from Householder
and Givens reduction of A to R, respectively. Compare that with the cost for the first
phase.

1Got lazy and just verbatim’d them

Math 8610 (Spring 2019) Homework 2 Trevor Squires

Solution. Recall that the full QR factorization in the first phase produces an R factor
used in the QR factorization. However, for a reduced QR factorization, note that

1=] = 10w] —aur

Thus, it suffices to compute only Q. We can do this by applying Q,,, ... Q1 (or QL. ... QT
in the case of Givens) to the left of I,,. However, this almost the exact same cost as the
phase 1 calculations. The only difference is that in phase 1, we applied the transforma-
tions to A instead of I,,. Thus, the cost of retrieving our @, is roughly the same, most
definitely in the asymptotic sense, as phase 1. That is, explicitly computing @, is some-
thing that we do not want to do when we can avoid it as it doubles the computational
cost.

4. Implement the algorithm for solving linear system Ax = b or linear least squares problem
min||b — Az||2 based on Householder QR. Make sure that the reduced Q factor is not
formed explicitly to save the cost of the second phase. Then, solve the linear least squares
problem min||b — Az||s where A = Ay and the linear system Az = b, where A = A3

in [Q2], and b = [1,-1,1,—1,...,]7. Report % for both solves, and compare this

quantity associated with the solutions obtained by MATLAB’s backslash.

Solution. Rather than just run the experiments on two matrices, I solved linear least
squares on A = u.(0 : 4i) where i ranged from 1 to 10. Figure 2 shows the differences
in backward errors for both my solutions and MATLAB’s backslash. I show this as a
scatter plot because it appears as if my algorithm outperforms MATLAB’s in almost
every case’. However, after looking at the scaling, this is in fact a semilog plot, one
with a very small scale. That is, the differences between the two backward errors are
around machine precision. Furthermore, Figure 3 shows us that despite performing on
par with MATLAB’s backslash, my code has a long way to go before it is comparable in
speed. Nonetheless, both exhibit backward errors on the magnitude of machine precision

for solving linear least square problems.
5. Suppose the m x n matrix A has the form
Ay
A =
)

where A; is nonsingular matrix of dimension n x n and A, is an arbitrary matrix of
appropriate dimension. Prove that ||AT|]2 < [|A7 Y2

Proof. Let A = QR be a reduced QR factorization of A. Note that

1T = (AT A) 7 AT = |(R"R)"'RTQT|
=|R7'Q"

2This isn’t entirely true. I can generate plots in MATLAB, but it is much harder to generate tables. This is
also the faster option to display data

Math 8610 (Spring 2019) Homework 2 Trevor Squires

" 10718 Errors on Solving Linear Least Squares
© My Errors
#* MATLAE Errors
5 - .
.*.
L. & + * i
=
w *
=
® 3k * @ .
= o]
& O
i *
. o o ®]
o
q
O
1t J
*
5 10 15 20 25 30 35 40
Size of matrix
Figure 2: Backward Errors
o.011 10 17 [v,R] = house (A{i});
0.0a5 10 48 v = houseEvaliv,b,1l):
D.002 10 419 mySolu = [Rreeros(m-ni(ij,niiji]vy:
D.0E1 1 50 matIolu = mldivide (A{1i},b):

Figure 3: Execution Time

Now decompose @ into (Q1, @2 of the same size as the decomposition of A. That is,

Ay Ql]
= R
[Az] [Q2
From the above, we conclude that Q1R = A; or equivalently, R~! = Al_lQl. Substituting
this into our previous equation,

1T = 1AT Q7 < AT @1 Q™

We know that @ is orthogonal, so it only suffices to show that ||@Q1]| < 1. Let x € R™ and

Math 8610 (Spring 2019) Homework 2 Trevor Squires

suppose that @Q1x = z. Then
z
o]

for some a € R. Thus, ||Q1z| < [|Qz| < ||z||® and the inequality follows. O

6. Take m = 50,n = 12. Using MATLARB’s linspace, define t to be the m vector correspond-
ing to linearly spaced grid points from 0 to 1. Using MATLAB’s vander and fliplr, define
A to be the m x n polynomial of degree n —1. Take b to be the function cos(4t) evaluated
on the grid. Now calculate and print the least squares coefficient vector z by six methods.

The results are summarized in Table 2. To generate the table, I assumed that the solution
x = A\b computed using MATLAB’s backslash operator was the true solution. Each
vector of coefficients were then compared to the solution generated with the backslash,
and then normed. The results are a bit unsurprising. The normal equations and MGS look
to be numerically unstable while Householder, MATLAB QR factorization, and MATLAB
SVD all seem to be relatively close to the true solution. I am unsure as to how we only
managed to get the square root of machine precision, but it is likely due to the fact that
x = A\b is, in fact, not the true solution.

Algorithm Norm of Errors
Normal Eq 1.06e — 1
MGS 1.526e — 1
Householder 2.85e — 8
MATLAB QR 3.3le — 8
MATLAB SVD 3.20e — 8

Table 2: Norm of Coeflicient Errors

3Note that these norms are not the same dimension wise

Math 8610 (Spring 2019) Homework 2

Trevor Squires

1 Appendix

1.1 Script files
1.1.1 Question 2

FoToToToToTo o o To o o Too o ToTo o JoTo o o To o o To o o
% Spring 2018 Math 8610 w/ Xue
% Homework 2

h

% Problem

hoo2

b

% Function Dependencies

% qrcgs.m

% qrmgs.m

% qrmgs2.m

% house.m

% formQ.m

% houseEval.m

h

% Notes

% None

b

% Author

% Trevor Squires

Yoo ToToo o ToTo oo o ToTo o o o JoTo o o o ToToFo o o o

clear
clc
close all;

n = [15 9:4:41];
matrixCount = 10;

A = cell(matrixCount,1);
A{1} = rand(2°20,n(1));
u = (-1:2/40:1);

condition= zeros(matrixCount,1);

condition(1:2) = [cond(A{1}) cond(A{2})];

for i = 2:matrixCount
A{i} = u."~(0:4%i);
condition(i) = cond(A{i});
end

Math 8610 (Spring 2019) Homework 2 Trevor Squires

cgs.forErr = zeros(matrixCount,1);
cgs.ortho = zeros(matrixCount,1);
mgs.forErr = zeros(matrixCount,1);
mgs.ortho = zeros(matrixCount,1);
mgs2.forErr = zeros(matrixCount,1);
mgs2.ortho = zeros(matrixCount,1);
hHolder.forErr = zeros(matrixCount,1);
hHolder.ortho = zeros(matrixCount,1);

%% Classical GS

for i = 1:matrixCount
[Q,R] = qrcgs(A{i});
cgs.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i}, ’fro’);
cgs.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Modified GS

for i = l:matrixCount
[Q,R] = qrmgs(A{i});
mgs.forErr(i) = norm(A{i}-Q+*R,’fro’)/norm(A{i}, ’fro’);
mgs.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Double Modified GS

for i = l:matrixCount
[Q,R] = qrmgs2(A{i});
mgs2.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i}, ’fro’);
mgs2.ortho(i) = norm(Q’*Q-eye(n(i)),2);

end

%% Householder Transformation
for i = l:matrixCount
[v,R] = house(A{i});
Q = formQ(v);
hHolder.forErr(i) = norm(A{i}-Q*R,’fro’)/norm(A{i}, ’fro’);
hHolder.ortho(i) = norm(Q’*Q-eye(n(i)),2);
end

save ("HW2Q2’,’cgs’,’mgs’, ’mgs2’, ’hHolder’,’condition’)

%% Analysis
load HW2Q2

loglog(condition,cgs.ortho,’:’)
hold on

Math 8610 (Spring 2019) Homework 2 Trevor Squires

loglog(condition,mgs.ortho,’--")
hold on
loglog(condition,mgs2.ortho,’~’)
hold on

loglog(condition,hHolder.ortho,’-.")
title(’Loglog plot of orthogonal errors’)

legend (’CGS’,’MGS’,’MGS2’, ’HouseHolder’,’location’, ’best’)

Math 8610 (Spring 2019) Homework 2

Trevor Squires

1.1.2 Question 4

Totototo To o to o fotoTo To o to o fo S To To foto o Yoo To o o
% Spring 2018 Math 8610 w/ Xue
% Homework 2

yA

% Problem

ho 4

pA

% Function Dependencies

% house.m

% formQ.m

% houseEval.m

pA

% Notes

% None

yA

% Author

% Trevor Squires

Voo 1o oo oo To oo o foTo o o o JoToTo o o JoTo o o o o

clear
clc
close all;

m = 41;
5:4:m;

B
]

matrixCount = 10;

A = cell(matrixCount,1);

u (-1:2/40:1);

condition= zeros(matrixCount,1);

for i = 1:matrixCount
A{i} = u."(0:4%1i);
condition(i) = cond(A{il});
end

myBackErr = zeros(l,matrixCount) ;
matBackErr = zeros(1,matrixCount) ;

%% Evaluation
for i = 1:matrixCount
powers = (2:n(i)+1)7;

solu = (-1xones(n(i),1)). powers;

10

Math 8610 (Spring 2019) Homework 2 Trevor Squires

b = A{i}*solu;

[v,R] = house(A{i});

y = houseEval(v,b,1);

mySolu = [R;zeros(m-n(i),n(i))]\y;
matSolu = mldivide(A{i},b);

myBackErr(i) = norm(b-A{i}*mySolu,2)/norm(A{i},2)/norm(mySolu,2);
matBackErr(i) = norm(b-A{i}*matSolu,2)/norm(A{i},2)/norm(matSolu,?2);

end

figure();

semilogx (n,myBackErr, bo’ ,n,matBackErr, ’r*’)
xlabel(’Size of matrix’)

ylabel (’Backward Error’)

title(’Errors on Solving Linear Least Squares’)
legend (’My Errors’,’MATLAB Errors’)

11

Math 8610 (Spring 2019) Homework 2

Trevor Squires

1.1.3 Question 6

Tototooto Tototo foto oo to Foto o oo Yoo Fo oo To o To o
% Spring 2018 Math 8610 w/ Xue
% Homework 2

b

% Problem

% 6 - Trefethen 11.3

yA

% Function Dependencies

% house.m

% formQ.m

% houseEval.m

yA

% Notes

% None

b

% Author

% Trevor Squires

Voo 1o oo oo To oo o foTo o o o JoToTo o o JoTo o o o o

clear
clc
close all;

m = 50;
12;
t = linspace(0,1,m);

=]
I

A = fliplr(vander(t));
A= AC:,1:12);

b = cos(4*t)’;
problem = cond(A);
error = zeros(1,5);

%% Matlab Backslash (solution)
solu = A\b;

%% Normal Equations
R = cholDecomp(A’*A);

normalCoeff = backSub(R’,forwardSub(R,A’*b));
error(1) = norm(solu-normalCoeff) ;

%% MGS

Math 8610 (Spring 2019) Homework 2

Trevor Squires

[Q,R] = qrmgs(A);
mgsCoeff = backSub(R,Q’*b);
error(2) = norm(solu-mgsCoeff);

%% Householder

[v,R] = house(A);

y = houseEval(v,b,1);

houseCoeff = [R; zeros(m-n,n)]\y;
error(3) = norm(solu-houseCoeff);

%% Matlab QR

[Q,R] = qr(A);

matqrCoeff = R\Q’*Db;

error(4) = norm(solu-matqrCoeff);

%% Matlab SVD

[U,Sigma,V] = svd(A);

matsvdCoeff = Vx(Sigma\(U’*b));
error(5) = norm(solu-matsvdCoeff);

13

Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2 Accompanying Functions

1.2.1 Classical GS

Yot oTo o oo o o o oo o To o To o o o o o o ToToTo o o

% QRCGS.m

o

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square
% upper triangular matrix R

h

% AUTHOR

% Trevor Squires

o

% ARGUMENTS

% A -mzxn matrix

o

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix
h

% NOTES

% Issues a warning if matrix is rank deficient
h

Tt loToToTo o o o o oo o To o To o o o o o o ToToTo oo

function [Q,R] = qrcgs(A)
[m,n] = size(A);

Q = zeros(m,n);
R = zeros(n);

for k = 1:
for i 1:k-1
R(i,k) = QC:,1i)’*A(:,k);

B

end
tmpAk = A(:,k);
for i = 1:k-1
tmpAk = tmpAk - Q(:,i)*R(i,k);
end
R(k,k) = norm(tmpAk,2);
QC:,k) = tmpAk/R(k,k);
end

14

Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.2 Modified GS
Yoo 1o oo o foTo oo o JoTo o o o JoTo o o o JoTo o o o o

% qrmgs.m

o

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square
% upper triangular matrix R using modified gram schmidt
2

% AUTHOR

% Trevor Squires

h

% ARGUMENTS

% A -mxn matrix

h

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix

2

% NOTES

b Issues a warning if matrix is rank deficient

o

Yot loToToToTo o o o o o JoToTo o o o o o o To ToTo o o

function [Q,R] = qrmgs(A)
[*,n] = size(A);

Q = A;
R = zeros(n);
for k = 1:n

R(k,k) = norm(Q(:,k));
QC:,k) = QC:,k)/R(k,k);

for j = k+l:n
R(k,j) = QC:,k)’>*Q(:,3);
QC:,3) = QC:, Rk, I*QC:,k);
end
end

15

Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.3 Double Modified GS

Tt loToToToTo o o o oo ToToToTo o o o o o o ToToTo oo

% qrmgs2.m

o

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square
% upper triangular matrix R using modified gram schmidt
2

% AUTHOR

% Trevor Squires

h

% ARGUMENTS

% A -mxn matrix

h

% OUTPUT

% Q - m x n orthonormal matrix

% R - n x n upper triangular matrix

2

% NOTES

b Issues a warning if matrix is rank deficient
o

Yot loToToToTo o o o o o JoToTo o o o o o o To ToTo o o

function [Q,R] = qrmgs2(A)
[Q1,R1] = qrmgs(A);
[Q,R2] = qrmgs(Q1);

R = R2xR1;
end

16

Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.4 HouseHolder Factorization

Tt loToToToTo o o o oo ToToToTo o o o o o o ToToTo oo

% HOUSE.m

o

% DESCRIPTION

% Decomposes a rectangular matrix A in rectangular matrix Q and square
% upper triangular matrix R householder transformations

2

% AUTHOR

% Trevor Squires

h

% ARGUMENTS

% A -mxn matrix

h

% OUTPUT

% v - matrix of vectors corresponding to Householder transformations
% R - n x n upper triangular matrix

2

Yoo oo ToTo o o o oo oo ToTo o o o o o o ToToTo o o

function [v,R] = house(A)
[m,n] = size(A);
v = zeros(m,n);

for k = 1:n
x = ACk:m,k);
v(k:m,k) = sign(x(1))*norm(x,2)*eye(m-k+1,1) + x;
v(k:m,k) = v(k:m,k)/norm(v(k:m,k),2);
A(k:m,k:n) = A(k:m,k:n) - 2*v(k:m,k)*(v(k:m,k) ’*A(k:m,k:n));
end
R=A(:n,:);
end

17

Math 8610 (Spring 2019) Homework 2 Trevor Squires

1.2.5 Evaluate Householder

To1oToToo o 1o o Too foTo o To o Jo o o To o Jo Jo o To o Jo T

% HOUSEEVAL.m

/A

% DESCRIPTION

% Given a matrix of v factors of house.m and a vector b, computes Q’b or
h Qb

b

% AUTHOR

% Trevor Squires

b

% ARGUMENTS

% v - matrix of factors from house.m

% b - vector in Qb or Q’b

% transpose - boolean variable that determines which calculation to
% perform

/A

% OUTPUT

% b - either Q’b or Qb

b

1o 1oToToo o To o Too o To o To o foJo o To o foTo o To o Jo T

function [b] = houseEval(v,b,transpose)
[m,n] = size(v);

if transpose
for k = 1:n
b(k:m) = b(k:m) - 2*v(k:m,k)*(v(k:m,k)’*b(k:m));
end
else
for k = n:-1:1
b(k:m) = b(k:m) - 2*xv(k:m,k)*(v(k:m,k)’*b(k:m)) ;
end
end

18

Math 8610 (Spring 2019) Homework 2

Trevor Squires

1.2.6 Form Q Function

T T I T T T s T S T I I T S T T T To S T ot T o o
% FORMQ.m

%

% DESCRIPTION

% Given an output v from house.m, formQ(v) produces the orthogonal Q

% matrix in the reduced QR factorization such that A = QR

b

% AUTHOR

% Trevor Squires
/A

% ARGUMENTS

% v - vector of Householder vectors computed in house.m

h

% OUTPUT

% Q - m x n orthogonal matrix
o

Toloto oo oo oo To o T Jo o o T Jo To T T T o

function [Q] = formQ(v)
[m,n] = size(v);

Q = zeros(m,n);

for i = 1:n
x = zeros(m,1);
x(i) = 1;

Q(:,i) = houseEval(v,x,0);
end

19

	Appendix
	Script files
	Question 2
	Question 4
	Question 6

	Accompanying Functions
	Classical GS
	Modified GS
	Double Modified GS
	HouseHolder Factorization
	Evaluate Householder
	Form Q Function

